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It is shown that every effect algebra can be represented as a pasting of a system
where each element is the range of an unsharp observable. To describe the range
of an unsharp observable algebraically, the notion of a “para-Boolean quasi-
effect algebra” is introduced. Some intrinsic compatibility conditions ensuring
commensurability of effects are studied.

1. THE ALGEBRAIC STRUCTURE OF THE RANGE OF AN
UNSHARP OBSERVABLE

It is well known that every orthomodular poset can be represented as
the pasting of a system of Boolean algebras [5, 21, 17], where the range of
every observable is a Boolean algebra [17] (in particular, each separable
element of the system of Boolean algebras is the range of a (real) sharp
observable [22]). The aim of the paper is to generalize such a result to the
case of effect algebras and unsharp observables. In contrast to the sharp case,
the range of an unsharp observable not only fails to be a Boolean algebra,
but is not even closed under the orthogonal sum. However, the range of any
unsharp observable retains some classical features that are captured by the
abstract notion of para-Boolean quasi-effect algebra. One can prove that
every effect algebra can be represented as a pasting of a system where each
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element of the system is the range of an unsharp observable. From the physical
point of view, effects contained in the range of an observable are coexistent,
in the sense they are simultaneously measurable.

Definition 1.1. An effect algebra is a partial structure ! 5 ^A, %, 1, 0&
where % is a partial binary operation on A. When % is defined for a pair a,
b P A, we will write ∃(a % b). The following conditions hold:

(i) Commutativity:
∃(a % b) implies ∃(b % a) and a % b 5 b % a.

(ii) Associativity:
[∃(b % c) and ∃(a % (b % c))] implies [∃(a % b) and ∃((a % b)
% c) and a % (b % c) 5 (a % b) % c].

(iii) Strong excluded middle:
For any a, there exists a unique x such that a % x 5 1.

(iv) Consistency:
∃(a % 1) implies a 5 0.

An orthogonality relation ', a partial order relation #, and a generalized
complement 8 can be defined in any effect algebra.

Definition 1.2. Let ! 5 ^A, %, 1, 0& be an effect algebra and let a, b P A.

(i) a ' b iff a % b is defined in A.
(ii) a # b iff ∃c P A such that a ' c and b 5 a % c.

(iii) The generalized complement of a is the unique element a8 such
that a % a8 5 1 (the definition is justified by the strong excluded
middle condition).

The structure ^A, #, 8, 1, 0& is an involutive bounded poset (also de Mor-
gan poset).

The category of all effect algebras turns out to be (categorically) equiva-
lent to the category of all difference posets [16], which were first studied in
ref. 10.

Let * be a Hilbert space, and denote by E(*) the set of all self-adjoint
operators E s.t. 0 # E # 1 (where 0 and 1 represent the null and the identity
operator, respectively). In order to induce the structure of an effect algebra
on E(*), it is sufficient to define a partial sum % as follows:

∃(E % F ) iff E 1 F P E(*), and in this case E % F :5 E 1 F

where 1 is the usual sum-operator.
It turns out that the structure ^E(*), %, 1, 0& is an effect algebra, where

the generalized complement of any effect E is just 1 2 E.

Definition 1.3. Let ! 5 ^A, %, 1, 0& be an effect algebra. Let (V , @(V))
be a pair consisting of a nonempty set V and a Boolean algebra @(V) of
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subsets of V . A (@(V), !)-observable is a map a: @(V) → A satisfying
the following conditions:

1. a(V) 5 1.
2. D1 ù D2 5 0⁄ implies a(D1 ø D2) 5 a(D1) % a(D2).

If no confusion is possible, by “observable” we will mean a (@(V), !)-
observable, where both the Boolean algebra of subsets and the effect algebra
are fixed. When v is an element of V s.t. {v} P @(V), we will write, for
the sake of simplicity, a(v) instead of a({v}). When V 5 R and @(R) is
the standard Borel s-algebra of subsets of R, we will speak of real observ-
ables. Let a be an observable and let Range(a) denote its range. In other words,

Range(a) 5 {a P !.∃D P @(V): a 5 a(D)}

Lemma 1.1. There exists an observable a s.t.:

1. Range(a) is not closed under %.
2. Range(a) does not satisfy the associativity condition [(ii) of Defini-

tion 1.1].
3. Let a, b P Range(a). The relation A [where a A b iff ∃c P Range(a)

s.t. ∃(a % c) and b 5 a % c] does not define a partial order
in Range(a).

Proof. Let ! be the unit-interval effect algebra. Let V :5 {1, 2, 3,
4} and let @(V) be the power-set of V . Let a be the observable defined
as follows:

a(1) 5
3
12

, a(2) 5
4
12

a(3) 5
1
12

, a(4) 5
4
12

It turns out that

Range(a) 5 H0, 1,
3
12

,
4
12

,
1
12

,
7
12

,
5
12

,
8
12

,
9
12

,
11
12J

1. Range(a) is not closed under %. For example, a(1) % a(1) 5
6
12

¸ Range(a).
2. Associativity fails. For example, ∃(a(1) % a(3)), ∃(a(1) % (a(1) %

a(3))), and ∃(a(1) % (a(1) % a(3))) 5
7
12

; however, a(1) % a(1) 5

6
12

¸ Range(a).
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3. The relation A is not transitive. For example,
1
12

A
4
12

since
1
12

%

3
12

5
4
12

and
3
12

P Range(a). Further,
4
12

A
7
12

since
4
12

%
3
12

5
7
12

. But

1
12

A⁄
7
12

since
1
12

%
6
12

5
7
12

and
6
12

¸ Range(a). n

As a consequence, Range(a) is not a subeffect algebra of !.

Definition 1.4. A quasi effect algebra is a structure

! 5 ^A, %, #, 8, 1, 0&

where:

1. ^A, #, 8, 1, 0& is an involutive bounded poset.
2. ∃(a % b) implies ∃(b % a) and

a % b 5 b % a

3. a % a8 5 1.
4. ∃(a % 1) implies a 5 0.
5. a % 0 5 a.
6. a # b and ∃(a % c) and ∃(b % c) imply a % c # b % c.

Lemma 1.2. Let ! be an effect algebra, where # and 8 represent the
induced partial order relation and the fuzzy complement, respectively. Let a
be an !-valued observable. The range of a gives rise to a quasi effect algebra:

^Range(a), %a, #a, 8a, 1a, 0a&

where:

1. ∃(a %a b) iff ∃(a % b) and (a % b) P Range(a). If ∃(a %a b), then

a %a b :5 a % b

2. #a is the restriction of # to Range(a).
3. 8a 5 8 (recall that the Range(a) is closed under 8).
4. 1a 5 1, 0a 5 0.

Notice that it may happen that a #a b even if there exists no c P
Range(a) such that a %a c 5 b.

Lemma 1.3 [12]. There exists an observable a s.t. Range(a) is not a
lattice with respect to the partial order #a defined in Lemma 1.2.

Definition 1.5. A quasi effect algebra
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! 5 ^A, %A , #A ,8A, 1A , 0A&

is para-Boolean iff there exists an effect algebra @ 5 ^B, %B ,8B, 1B , 0B&
such that:

1. A # B.
2. a, b P A and ∃(a %A b) imply ∃(a % B b) and a %A b 5 a % B b.
3. a P A implies a8B 5 a8B

4. a, b P A implies [a # A b iff a # B , b].
5. 0A 5 0B , 1A 5 1B.
6. There exists a @-observable a such that A # Range(a).

In other words, a para-Boolean quasi effect algebra is contained in the
range of an observable.

Definition 1.6. A quasi effect manifold is a system of quasi effect algebras

{!i 5 ^Ai , %i , #i , 8i, 1i , 0i&: i P I}

such that:

1. ∀ij [1i 5 1j and 0i 5 0j].
2. a, b P Ai ù Aj and ∃(a %i b) and ∃(a %j b) imply a %i b 5 a %j b.
3. a P Ai ù Aj implies a8i 5 a8j.
4. ∃ji [b, c, b %j c P Aj and a, b %j c, a %i (b %j c) P Ai] implies

∃hk [a, b, a %h b P Ah and a %h b, c, (a %h b) %k c P Ak] and

a %i (b %j c) 5 (a %h b) %k c

5. a, b P Ai ù Aj implies [a #i b iff a #j b].

Definition 1.7. A para-Boolean manifold is a quasi effect manifold,
where each quasi effect algebra is para-Boolean.

Theorem 1.1. Every quasi effect manifold {!i} determines an effect
algebra @ 5 ^B, %, 0, 1& s.t.:

1. B 5 øi Ai

2. ∃(a % b) iff ∃i a, b P Ai and ∃(a %i b)]. If ∃(a % b) and ∃(a %i

b), then a % b 5 a %i bi.
3. 1 5 1i , 0 5 0i.

We say that {Ai} is a covering of @. n

Proof. Straightforward.

Theorem 1.2. Every effect algebra is covered by a para-Boolean manifold.
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Proof. Let @ 5 ^B, %, 1, 0& be an effect algebra. Let us consider the
class of all real @-observables. Each Range(a) determines a para-Boolean
quasi-effect algebra

!i 5 ^Range(ai), %, #, 8, 1, 0&

where % #, 8, 1, 0 are the operations (relations) of @ restricted to Range(ai).
Let us consider {!i}. We will prove that {!i} is a para-Boolean manifold
which covers @.

Conditions 1–3 and 5 of Definition 1.6 are easily verified.
Now, we prove condition 4. Suppose ∃(b %j , c) and ∃(a %i (b %j c)).

Then ∃(b % c) and ∃(a % (b % c)). Thus, b 'B c and a 'B (b % c). Then,
by associativity of @, ∃(a %B b) and ∃((a %B b) %B c). Since a ' b, there
must be an observable ah s.t. a, b, a % b P Range(ah). Similarly, since a %h

b ' c, there must be an observable ak s.t. a %h b, c P Range(ak) and (a %h

b) %k c P Range(ak). Then, clearly, a %i (b %j c) 5 (a %h b) %k c.
Consequently, {!i} is a para-Boolean manifold. We now prove that {!i} is
a covering of @. Clearly, B 5 øi Range(ai).

If ∃(a %B b), then a 'B b, so that there exists an observable ai s.t. a,
b, a %i b P Range (ai) and a %i b 5 a %B b. n

2. DIFFERENT NOTIONS OF COMPATIBILITY

From the physical point of view a privileged notion of compatibility is
represented by the relation of commeasurability (called also simultaneous
measurability or coexistence). Consider an effect algebra !. Let Obs! denote
the set of all observables on ! and let a, b P A. We will follow Varadarajan
[22, 23, p. 118] (see also Mackey [15, p. 70]).

Definition 2.1. a and b are called commeasurable (a ; b iff ∃2 P
Obs!: a, b P Range(2).

It would be desirable to have an intrinsic definition of commeasurability.
As is well known, in orthomodular lattices, such a condition is represented
by a decomposition property [22, 15]. In the effect algebra case one can
define this intrinsic notion as follows [9]:

Definition 2.2. a and b are called Mackey-compatible (a ;M b) iff ∃a1,
b1, c [∃(a1 % b1 % c) and a 5 a1 % c and b 5 b1 % c]. In such a case, we
will say that a1, b1, c represent a Mackey decomposition of a, b.

One can easily show the following result:

Lemma 2.1. a ; b iff a ;M b.

By transferring the usual notion of compatibility from orthomodular
posets to effect algebras, we obtain the following weaker relation.
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Definition 2.3. a and b are called weakly-Mackey compatible (a ;WM

b) iff ∃a1b1c [a1 ' b1, a1 ' c, b1 ' c, and a 5 a1 % c, and b 5 b1 % c].
In such a case, we will say that a1, b1, c represent a Mackey weak decomposi-
tion of a, b.

Lemma 2.2. Mackey-compatibility implies weakly-Mackey compatibil-
ity, but not the other way round.

The following example shows that weakly-Mackey compatibility is not
sufficient for Mackey-compatibility.

Example 2.1. Recall that a Wright triangle is an orthoalgebra which is
a pasting of three blocks determined by the following sets of atoms: {a, b,
c}, {c, d, e}, {e, f, a}. We have a ' c, c ' e, e ' a, b8 5 a % c, d8 5 c
% e. At the same time, b8, d8 are not Mackey-compatible since they do not
belong to one and the same block. Therefore, the Wright triangle represents
an example of an effect algebra where the relation of Mackey-compatibility
and weakly-Mackey compatibility do not coincide.

Moreover, we have the following result:

Lemma 2.3. ! is an orthomodular poset if and only if the following
condition is satisfied:

• ∀a, b P !, a 5 a1 % c, b 5 b1 % c is a Mackey weak decomposition
iff it is a Mackey decomposition of a, b.

Proof. It is easy to see that an effect algebra ! is an orthomodular poset
iff for any a, b, c P !, a ' b, b ' c, and c ' a imply a % b ' c. Indeed,
the latter property implies that a % b coincides with a ∨ b whenever a ' b.

Clearly, if ! is an orthomodular poset, then every Mackey weak decom-
position is a Mackey decomposition.

Conversely, if ! is not an orthomodular poset, then there are pairwise
orthogonal elements a, b, c such that a % b is not orthogonal to c. Consider
u 5 a % b, v 5 a % c; then a, b, c is a Mackey weak decomposition, but
not a Mackey decomposition, of u, v. n

In any orthomodular poset, Mackey decompositions are unique (when-
ever they exist). In effect algebras, instead, Mackey decompositions need not
be unique.

Example 2.2. Consider the chain H0,
1
4

,
1
2

,
3
4

, 1J and the elements

1
4

,
3
4

.
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Then both 0,
1
4

,
3
4

and
1
4

, 0,
1
2

are Mackey decompositions of
1
4

and

3
4

. For a counterexample in orthoalgebras see the Frazer cube [14].

Let us now introduce some properties that concern the whole effect
algebra !.

Definition 2.4. An effect algebra ! satisfies the Mackey property iff the
relation ;M is universal.

Definition 2.5. An effect algebra ! satisfies the Riesz property iff ∀xyz:
x # y % z implies ∃y1z1 [y1 # y and z1 # z and x 5 y1 % z1].

Lemma 2.4 [20]. If an effect algebra ! satisfies the Riesz property, then
! is an interval-effect algebra, but not the other way round.

As expected, the concrete effect algebra E(*) does not satisfy either
the Mackey property or the Riesz property.

Lemma 2.5. If an effect algebra A satisfies the Riesz property, then A
satisfies the Mackey property, but not the other way round.

Proof. For any a, b we have a # b % b8. By the Riesz property, there
are a1 # b, a2 # b8 such that a 5 a1 % a2. Since a1 # b, there is c such
that b 5 a1 % c. Now a1 % c # b, a2 # b8 imply a1 % c ' a2, so that a1,
a2, c is a Mackey decomposition of a, b.

The Fano plane (Fig. 1) represents an example of an effect algebra
where the Mackey property is satisfied, whereas the Riesz property fails. n

Fig. 1. Fano plane.
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The following definition provides a strengthening of the Mackey compat-
ibility which is equivalent to the Riesz property.

Definition 2.6. Let x be any element of !. Two elements a, b are called
x-Mackey compatible (a ;x b) iff a, b # x and there is a Mackey decomposi-
tion a1, b1, c of a, b such that a1 % b1 % c # x.

Theorem 2.1. An effect algebra ! satisfies the Riesz property iff for
any a, b, x, P !, a, b # x implies a ;x b.

Proof. Assume the Riesz property. Let a, b # x. Then there is y such
that a # b % y 5 x. By hypothesis, there are c # b, a1 # y such that a 5
c % a1. Let b1 be such that c % b1 5 b. Now c % b1 5 b, a1 # y imply
a1 % b1 % c # b % y 5 x. Hence a ;x b.

To prove the converse, let x # y % z. Put w :5 y % z. By hypothesis,
x ;w y, hence there are x1, y1, u such that x1 % y1 % u # w and x 5 x1 %
u, y 5 y1 % u. It suffices to prove x1 # z. Let v be such that x1 % y1 % u
% v 5 w 5 y % z. By the cancellation property, x1 % v 5 z, hence x1 # z. n

Theorem 2.2 [1; see also 18]. An orthoalgebra satisfying the Riesz
property is a Boolean algebra.

Proof. Let ! be an orthoalgebra satisfying the Riesz property. First we
prove that ∀a, b P A: if a ' b, then a ∨ b exists and is equal to a % b. It
then easily follows that ! is an orthomodular poset.

Let a ' b. Clearly a, b # a % b. Let a, b # x. By Theorem 2.1, there
is a Mackey decomposition a1, b1, c of a, b such that a1 % b1 % c # x. But
a ' b implies c ' c, hence c 5 0, so that a1 5 a, b1 5 b. This implies a %
b # x whenever a, b # x, i.e., a % b 5 a ∨ b. Therefore ! is an orthomodular
poset. Since any two elements are compatible, ! is a Boolean algebra.

2.1. Lattice-Ordered Effect Algebras

Let us now consider effect algebras that are lattice-ordered (in other
words, the partial order # gives rise to a lattice) (for basic properties see,
e.g., refs. 1, 11, and 8).

Needless to recall that E(*) is not lattice-ordered.

Lemma 2.6. The properties of being lattice-ordered and the Riesz prop-
erty are incomparable.

An example of a lattice ordered effect algebra which does not satisfy
the Riesz property is the “diamond” [8]. (Recall that the diamond is an effect
algebra consisting of elements {0, 1, a, b}, where a ' a, b ' b, a % a 5
b % b 5 1, x % 0 5 x, x P {0, 1, a, b}.) An example of an affect algebra
satisfying the Riesz property which is not a lattice is an interval [0, a], where
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a is a positive element in a Riesz group which is not a lattice (see ref. 7 for
such examples).

Theorem 2.3. For a lattice-ordered effect algebra the following conditions
are equivalent:

1. Riesz.
2. Mackey.
3. a ∧ b 5 0 implies a ' b.

For the proof, see refs. 1 and 18.
In any lattice-ordered effect algebra one can define a total operation M1:

a M1 b :5 a % (a8 ∧ b)

Notice that our operation M1 is well defined because a ' (a8 ∧ b).

Theorem 2.4. In any lattice-ordered effect algebra

a # b iff a8 M1 b 5 1

As a consequence, lattice-ordered effect algebras have a “good” polyno-
mial conditional.

Lemma 2.7. A lattice-ordered effect algebra satisfies the Riesz property
iff the operation M1 is commutative.

Definition 2.7. An effect algebra ! 5 ^A, %, 1, 0& is an MV-effect
algebra iff there is an MV-algebra } 5 ^M, M1M , 8M, 1M , 0M& that represents
a “reorganization” of !. In other words:

1. M 5 A.
2. a8M 5 a8.
3. 1M 5 1; 0M 5 0.
4. ∃(a % b) implies a M1M b 5 a % b.
5. a #M b implies a # b.

For the proof of the next theorem, see ref. 18 (compare also with refs.
2 and 1).

Theorem 2.5. An effect algebra ! is an MV-effect algebra iff ! is lattice
ordered and satisfies the Mackey property.

As is well known, an orthomodular poset is a Boolean algebra if and
only if it satisfies the Mackey property. Theorem 2.5 shows that a similar
result holds for a lattice-ordered effect algebra. It turns out that a much
stronger notion of compatibility is needed to make a general effect algebra
an MV-algebra.
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Theorem 2.6. An effect algebra ! is an MV-effect algebra iff ∀a, b
there is a Mackey decomposition a1, b1, c such that a, b # x implies a1 %
b1 % c # x.

Proof. It is easy to see that a1 % b1 % c 5 a ∨ b, so that ! is a lattice.
Theorem 2.5 implies that ! is an MV-effect algebra.

Conversely, in any MV algebra, a ∧ b, (a M1 b8)8, (b M1 a8)8 is a Mackey
decomposition of a, b and (a ∧ b) M1 (a M1 b8)8 M1 (b M1 a8)8 5 a ∨ b. n

3. A CHARACTERIZATION OF THE RANGE OF AN
OBSERVABLE

In this section, we will discuss the following question: under what
conditions can a subset F of elements of an effect algebra ! 5 (A, %, 1, 0)
be embedded into the range of a (finitely additive) observable? We will answer
the question by using projective limits of simple observables (equivalently,
partitions of unity in A) in a similar way as in ref. 13.

Let (V , @(V)) be a nonempty set V and an algebra @(V) of subsets
of V . We will consider (@(V), !)-observables, i.e., morphisms from @(V)
to A according to Definition 1.3.

Definition 3.1. An observable a:@(V) → A is simple iff there is a finite
subset V0 5 {v1, . . . , vn} of V such that each singleton {vi} P @(V), for
i 5 1,2, . . . , n, and a(v1) % ??? % a(vn) 5 1.

A finite partition of unity in A is a finite sequence a1, . . . , an of elements
of A such that %i#n ai 5 1 (i.e., the latter sum exists end equals 1).

Lemma 3.1. There is one-to-one correspondence between simple observ-
ables and finite partitions of unity in A.

Proof. If a: @(V) → A is a simple observable, there is a finite set V0 :5
{v1, . . . , vn} of points in V such that each singleton {vi}, for i 5 1, 2, . . . ,
n, belongs to @(V) and R :5 {a(v1), . . . , a(vn)} is a partition of unity. Let
us notice that V0 and any of its subsets are elements of @(V), i.e., the whole
power set 2V0 of V0 is contained in @(V). Therefore, we can introduce
aR: 2V0 → A defined as aR(X ) 5 %{i:viPX} a(vi), X P 2V0. Then aR is an
observable which coincides with a on 2V0, this latter being such that a(V0)
5 1 [whence a(V \V0) 5 0], i.e., the support of a is V0. For these reasons
we can identify the original A-valued observable a on @(V) with the A-
valued observable aR on 2V0.

Conversely, let R :5 {a1, . . . , an} be a finite partition of unity in A.
Let V0 5 {v1, . . . , vn} be a finite set equipped with the algebra of subsets
2V0, and define, ∀X P 2V0, a(X ) 5 %{i:viPX}ai. It is easy to check that a:
2V0 → A is a simple A-valued observable on 2V0. n
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Definition 3.2. (a) Let (D, #) be a directed set and Vi a finite set for
each i P D. Whenever i, j P D and i # j, let there be given a mapping gi,j :
Vj → Vi and denote by & :5 {gi,j: i, j P D and i # j} the collection of all
such mappings. The pair ((Vi)iPD, &) is called a projective system of finite
sets if the following conditions hold:

(i) gi,i is the identity map on Vi for each i P D.
(ii) gi,j + gj,k 5 gi,k whenever i # j # k.
(b) We say that ((Vi , ai)iPD, &) is a projective system of simple observ-

ables if ((Vi)iPD, &) is a projective system of finite sets and for each
i P D, ai: 2Vi→A is a simple observable such that the following compatibility
condition holds:

(iii) ∀X P 2Vi, ai (X ) 5 aj (g21
i,j (X )) whenever i # j.

Let ((Vi)iPD, (gi,j )iPD,i#j ) be a projective system of finite sets with
directed set D. If VD :5 3iPDVi is the Cartesian product of the Vi , let V be
its subset consisting of those elements, called threads, V 5 {(vi)iPD P VD

such that ∀i, j P D satisfying i # j we have gi,j(vj) 5 vi}. Then V is called
the projective limit of the system ((V)i)iPD, (gi,j )iPD,i#j ) and denote V 5:
lim←(Vi , gi,j ) [19]. For this space we consider the i-projection gi: V → Vi ,
v ° vi , ∀i P D. Trivially, gi 5 gi,j + gj whenever i # j.

In general, V can be very small (or empty) even if each gi,j is an
onto mapping. In order to overcome this difficulty, the following (sufficient)
condition (due to Bochner) is useful.

Definition 3.3. A projective system of finite sets ((Vi)iPD, (gi,j )iPD,i#j ),
is said to satisfy the sequential maximality condition (s.m. condition) if for
each sequence i1 # i2 # ??? in D and any point v 5 (vi)iPD, P VD such that

gin,in11(vin11) 5 vin, n $ 1

we have v P V .
It is not hard to verify that the s.m. condition holds if each Vi is a

nonempty compact Hausdorff space (in particular, if it is finite) and all gi,j

are onto mappings [19]. In the latter case 0⁄ Þ V , VD is also compact.

Theorem 3.1. Let ! 5 ^A, %, 1, 0 & be an effect algebra. A subset K
of A can be embedded into a range of an observable a if and only if there
is a projective system ((Vi , ai)iPD, &) of simple observables such that for
each k P K there is an i P D such that k P Range(ai).

Proof. (i) Assume that K # Range(a) for an observable a: @(V) → A,
where @(V) is a Boolean algebra of subsets of a nonempty set V [i.e., for
every k P K, there exists Xk P @(V) such that a(Xk) 5 k]. Let 5 be the set
of all finite disjoint partitions of V with elements in @(V) [in particular, for
every k P K the pair Rk :5 {Xk , V \Xk} is a finite partition of V , i.e., an
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element of 5]. For each R 5 {Xi}i#n P 5, the mapping R { Xi ° a(Xi) P
A defines uniquely a simple observable aR: 2R → A by the law ∀{X1, X2,
. . . , Xj} # R, aR({X1, X2, . . . , Xj}) 5 aR(X1) % aR(X2) % . . . % aR(Xj) [in
particular, aRk (Xk) 5 k]. Let R1, R2 P 5 and assume that R1 is a refinement
of R2, that is, for every Xi P R1 there is (exactly one) Yj P R2, such that
Xi # Yj. We then write R2 # R1. For R2 # R1 the function gR1R2: R1 → R2,
Xi ° Yj (with Xi # Yj) is then a uniquely defined onto mapping. If R2 # R1

and R3 # R2, then also R3 # R1 and gR3R1 5 gR3R2 + gR2R1. Finally, for any
two partitions R1, R2 P 5 the partition R 5 {Xi ù Yj: Xi P R1, Yj P R2}
belongs to 5, and is a common refinement of R1 and R2, that is, R1 # R,
R2 # R, and so (5, #) is a directed set. Let & :5 {gSR: R, S P 5, R # S}.
It is now immediate to check that ((R, aR)RP5, &) is a projective system of
simple observables. By construction, K # øRP5 Range(aR).

Conversely, let ((Vi , ai)iPD, &) be a projective system of simple observ-
ables. Then, the Bochner s.m. condition is satisfied and, by Proposition 4 in
ref. 19, p. 120, the projective limit V 5 limi← is a compact Hausdorff space.
Let gi: V → Vi be the natural coordinate projection, i P D. The s.m. condition
implies that gi (V) 5 Vi. Define @(V)0 :5 øi g21

i (@(V)i). Then @(V)0 is an
algebra of subsets of V , which is generated by the cylinder sets of V with
bases in @(V)j , i P D, where @(V)i :5 2Vi. Let X P @(V)0. If
X P g21

i (@(V)i) ù g21
j (@(V)j), then there exist Y1 P @(V)i , Y2 P @(V)j

such that X 5 g21
i (Y1) 5 g21

j (Y2). Since D is directed, there exists an l P D
such that l $ i, l $ j, and by compatibility of the mappings, we have gi 5
gil + gl , gj 5 gjl + gl. Hence

g21
l (g21

il (Y1)) 5 g21
i (Y1) 5 X

5 g21
j (Y2) 5 g21

l (g21
jl (Y2))

Since gl: V → Vl is onto, it follows that g21
l : @(V)l → @(V)0 is one-

to-one, so that the latter equations imply that

g21
il (Y1) 5 g21

jl (Y2)

Thus

ai (Y1) 5 al(g21
il (Y1))

5 al(g21
jl (Y2)) 5 aj (Y2)

by the compatibility of observables. If we set a(X ) :5 ai (Y1) 5 aj (Y2), X P
@(V)0, then a is unambiguously defined on @(V)0. Clearly, a(V) 5 ai (Vi) 5
1, and a is finitely additive on @(V)0. Moreover, the prescription also implies
that ai 5 a + g21

i , i P D. Hence ∀i P D, Range(ai) , Range(a). n
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